Sains Malaysiana 52(11)(2023): 3103-3119
http://doi.org/10.17576/jsm-2023-5211-07
The Optimal Cryo Revival Period of
Cryopreserved Wharton's Jelly Derived-Mesenchymal Stem Cells
(Tempoh Pemulihan Krio Optimum bagi Sel Stem Mesenkima Wharton Jeli yang Diawet Krio)
VIKNESWARY RAVI KUMAR1,2, MOHAMAD FIKERI ISHAK2, SHARIFAH IZWAN TUAN
OTHMAN1, TRISTAN TAN3 & YOGESWARAN LOKANATHAN2,*
1University Selangor (UNISEL, Shah Alam City Campus, Selangor), Jalan Zirkon A7/A, Seksyen 7, 40000 Shah Alam, Selangor, Malaysia
2Centre for Tissue Engineering and
Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latiff, Bandar Tun Razak, 56000 Cheras, Kuala Lumpur, Malaysia
3Da Vinci Healife Sdn. Bhd. 13-2, The Boulevard Offices, Mid Valley
City, 59200 Kuala Lumpur, Malaysia
Received:
12 May 2023/Accepted: 20 October 2023
Abstract
The workflow of cryopreservation is a
challenging step in the standardised preparation of cell therapy products in
terms of methods used (i.e., adapted controls of the work environment, quality
control, reagents, and equipment). This study aimed to determine the effect of
cryopreservation on the stability of mesenchymal stem cell (MSC)
characteristics by comparing fresh cells with those that underwent different
post-thaw cell recovery periods. The MSCs were derived from human Wharton’s
jelly umbilical cord (n = 4). The cells that were cryopreserved for 7 days were
revived at 0 h (CRC-0h), 24 h (CRC-24h) and 7 days (CRC-7d) and then evaluated
on the basis of cell viability, doubling time, morphology, trilineage differentiation potential, growth kinetics, and MSC surface marker expression.
The cell viability of the CRC-0h group was 90%, whereas that of the CRC-24h group was 80%-85%. Cell attachment results showed that
CRC-24h had a notably higher attachment rate than the other two groups. The CRC
groups showed CD90, CD73 or CD44 expression, which meets the minimum criteria
for defining multipotent MSCs. By contrast, CD105 expression was significantly
reduced in the CRC groups and was lower than the minimum requirement based on
the standards of the International Society for Cellular Therapy. Results suggest
that at least 24 h is necessary to improve the quality of MSCs for it to be
adequate for cell therapy use.
Keywords: Cell therapy; cryopreservation; cryorevival; mesenchymal stromal cell; recovery period
Abstract
Aliran kerja pengawetan krio ialah satu langkah yang mencabar dalam penyediaan piawai produk terapi sel daripada segi kaedah yang digunakan (seperti kawalan disesuaikan persekitaran kerja, kawalan kualiti, reagen dan peralatan). Kajian ini bertujuan untuk menentukan kesan pengawetan krio ke atas kestabilan ciri sel stem mesenkima (MSC) dengan membandingkan sel segar dengan sel yang menjalani tempoh pemulihan sel pasca nyahbeku yang berbeza. MSC diperoleh daripada tali pusat jeli Wharton manusia (n = 4). Sel yang diawet krio selama 7 hari telah dihidupkan semula pada 0 jam (CRC-0j), 24 jam (CRC-24j) dan 7 hari (CRC-7h) dan kemudian dinilai berdasarkan daya maju sel, masa gandaan, morfologi, potensi pembezaan trilineage, kinetik pertumbuhan dan ekspresi penanda permukaan MSC. Daya maju sel kumpulan CRC-0j ialah 90%, manakala kumpulan CRC-24j ialah 80%–85%. Keputusan pelekatan sel menunjukkan bahawa CRC-24j mempunyai kadar pelekatan yang lebih tinggi daripada dua kumpulan lain. Kumpulan
CRC menunjukkan ekspresi CD90, CD73 atau CD44 yang memenuhi kriteria minimum untuk menentukan MSC multipoten. Sebaliknya, ekspresi CD105 berkurang dengan ketara dalam kumpulan CRC dan lebih rendah daripada keperluan minimum berdasarkan piawaian International Society for Cellular Therapy. Keputusan menunjukkan bahawa sekurang-kurangnya 24 jam diperlukan untuk meningkatkan kualiti MSC supaya ia mencukupi untuk kegunaan terapi sel.
Kata kunci: Pemulihan krio; pengawetan krio; sel stromal mesenkima; tempoh pemulihan; terapi sel
REFERENCES
Abazari,
A., Hawkins, B.J., Clarke, D.M. & Mathew, A.J. 2017. Biopreservation best
practices: A cornerstone in the supply chain of cell-based therapies - MSC
model case study. Cell and Gene Therapy
Insights 3(10): 853-871. doi: 10.18609/cgti.2017.082
Ali, H., Al-Yatama, M.K.,
Abu-Farha, M., Behbehani, K. & Al Madhoun, A. 2015. Multi-lineage
differentiation of human umbilical cord Wharton's Jelly Mesenchymal Stromal
cells mediates changes in the expression profile of stemness markers. PLoS ONE 10(4): e0122465. doi:
10.1371/journal.pone.0122465
Antebi, B., Asher, A.M.,
Rodriguez II, L.A., Moore, R.K., Mohammadipoor, A. & Cancio, L.C. 2019.
Cryopreserved mesenchymal stem cells regain functional potency following a 24-h
acclimation period. J. Transl. Med. 17: 297. doi: 10.1186/s12967-019-2038-5
Bahsoun, S., Coopman, K.
& Akam, E.C. 2019. The impact of cryopreservation on bone marrow-derived
mesenchymal stem cells: A systematic review. J. Transl. Med. 17: 397. doi: 10.1186/s12967-019-02136-7
Bharti, D., Shivakumar, S.B.,
Son, Y.B., Choi, Y.H., Ullah, I., Lee, H.J., Kim, E.J., Ock, S.A., Park, J.E.,
Park, J.K., Kang, D., Lee, S.L., Park, B.W. & Rho, G.J. 2019.
Differentiation potential of different regions-derived same donor human
Wharton's jelly mesenchymal stem cells into functional smooth muscle-like
cells. Cell Tissue Res. 377(2):
229-243. doi: 10.1007/s00441-019-03009-7
Biehl, J. K., & Russell, B. 2009. Introduction to stem cell therapy. The Journal of Cardiovascular Nursing 24(2): 98-105. https://doi.org/10.1097/JCN.0b013e318197a6a5
Brohlin, M., Kelk, P.,
Wiberg, M. & Kingham, P.J. 2017. Effects of a defined xeno-free medium on
the growth and neurotrophic and angiogenic properties of human adult stem
cells. Cytotherapy 19(5): 629-639.
doi: 10.1016/j.jcyt.2017.02.360
Chen, T., Yang, T., Zhang, W.
& Shao, J. 2021. The therapeutic potential of mesenchymal stem cells in
treating osteoporosis. Biol. Res. 54(1): 42. doi: 10.1186/s40659-021-00366-y
Chian, R-C. 2010.
Cryobiology: An overview. In Fertility
Cryopreservation, edited by Chian, R-C. & Quinn, P. New York: Cambridge
University Press. pp. 1-9.
Cleary, M.A., Narcisi, R.,
Focke, K., van der Linden, R., Brama, P.A. & van Osch, G.J. 2016.
Expression of CD105 on expanded mesenchymal stem cells does not predict their
chondrogenic potential. Osteoarthritis
Cartilage 24(5): 868-872. doi: 10.1016/j.joca.2015.11.018
De Miguel, M.P.,
Fuentes-Julián, S., Blázquez-Martínez, A., Pascual, C.Y., Aller, M.A., Arias,
J. & Arnalich-Montiel, F. 2012. Immunosuppressive properties of mesenchymal
stem cells: Advances and applications. Current
Molecular Medicine 12(5): 574-591.
Dominici, M., Le Blanc, K.,
Mueller, I., Slaper-Cortenbach, I., Marini, F., Krause, D., Deans, R., Keating,
A., Prockop, D.J. & Horwitz, E. 2006. Minimal criteria for defining
multipotent mesenchymal stromal cells. The International Society for Cellular
Therapy position statement. Cytotherapy 8(4): 315-317. doi: 10.1080/14653240600855905
Francois, M., Copland, I.B.,
Yuan, S., Romieu-Mourez, R., Waller, E.K. & Galipeau, J. 2012.
Cryopreserved mesenchymal stromal cells display impaired immunosuppressive
properties as a result of heat-shock response and impaired interferon-gamma
licensing. Cytotherapy 14(2): 147-152. doi: 10.3109/14653249.2011.623691
Gurruchaga, H., Saenz del
Burgo L., Hernandez, R.M., Orive, G., Selden, C., Fuller, B., Ciriza, J. &
Pedraz, J.L. 2018. Advances in the slow freezing cryopreservation of
microencapsulated cells. Journal of Controlled Release 281: 119-138.
Hieu Pham, L., Bich Vu, N.
& Van Pham, P. 2019. The subpopulation of CD105 negative mesenchymal stem
cells show strong immunomodulation capacity compared to CD105 positive mesenchymal
stem cells. Biomedical Research and
Therapy 6(4): 3131-3140. doi: 10.15419/bmrat.v6i4.538
Hieu, T.H., Dibas, M., Surya
Dila, K.A., Sherif, N.A., Hashmi, M.U., Mahmoud, M., Trang, N.T.T., Abdullah,
L., Nghia, T.L.B., Mai Nhu, Y., Hirayama, K. & Huy, N.T. 2019. Therapeutic
efficacy and safety of chamomile for state anxiety, generalized anxiety
disorder, insomnia, and sleep quality: A systematic review and meta-analysis of
randomized trials and quasi-randomized trials. Phytother. Res. 33(6): 1604-1615. doi: 10.1002/ptr.6349
Ishak, M. F., Manira, M., Ng, M. H., Khairul, B., Gargy, L., Aminuddin, B.S. & Ruszymah, B.H.I. 2019. Long term effect of cryopreservation on primary human skin cells. Sains Malaysiana 48(1): 137-144. https://doi.org/10.17576/jsm-2019-4801-16
Kannaiyan, J., Muthukutty,
P., Tabish Iqbal, M.D. & Paulraj, B. 2017. Villous chorion: A potential
source for pluripotent-like stromal cells. J.
Nat. Sci. Biol. Med. 8(2): 221-228. doi: 10.4103/0976-9668.210011
Kassem, D.H. & Kamal,
M.M. 2020. Mesenchymal stem cells and their extracellular vesicles: A potential
game changer for the COVID-19 crisis. Front Cell Dev. Biol. 8: 587866. doi:
10.3389/fcell.2020.587866
Kern, S., Eichler, H.,
Stoeve, J., Kluter, H. & Bieback, K. 2006. Comparative analysis of
mesenchymal stem cells from bone marrow, umbilical cord blood, or adipose
tissue. Stem Cells 24(5): 1294-1301. doi: 10.1634/stemcells.2005-0342
Lechanteur, C., Briquet, A.,
Giet, O., Delloye, O., Baudoux, E. & Beguin, Y. 2016. Clinical-scale
expansion of mesenchymal stromal cells: A large banking experience. J. Transl. Med. 14(1): 145. doi:
10.1186/s12967-016-0892-y
Levi, B., Wan, D.C.,
Glotzbach, J.P., Hyun, J., Januszyk, M., Montoro, D., Sorkin, M., James, A.W.,
Nelson, E.R., Li, S., Quarto, N., Lee, M., Gurtner, G.C. & Longaker, M.T.
2011. CD105 protein depletion enhances human adipose-derived stromal cell
osteogenesis through reduction of transforming growth factor beta1 (TGF-beta1)
signaling. J. Biol. Chem. 286(45): 39497-39509. doi: 10.1074/jbc.M111.256529
Lim, J., Eng, S.P., Yeoh,
W.Y., Low, Y.W., bin Jusoh, N.M.S., Binti Rahmat, A.S., Shahrani, A., Bahrani
Yahya, F., Abdul Rahman, R.A. & Mohamad Razi, Z.R. 2021. Immunomodulatory
properties of Wharton's jelly-derived mesenchymal stem cells from three
anatomical segments of umbilical cord. Sains
Malaysiana 50(6): 1715-1726.
Marquez-Curtis, L.A.,
Janowska-Wieczorek, A., McGann, L.E. & Elliott, J.A. 2015. Mesenchymal
stromal cells derived from various tissues: Biological, clinical and cryopreservation
aspects. Cryobiology 71(2): 181-197. doi: 10.1016/j.cryobiol.2015.07.003
McElreavey, K.D., Irvine, A.I., Ennis, K.T. & McLean, W.H. 1991. Isolation, culture and characterisation of fibroblast-like cells derived from the Wharton’s jelly portion of human umbilical cord. Biochemical Society Transactions 19(1). doi: 10.1042/bst019029s.
Murray, K.A. & Gibson,
M.I. 2020. Post-thaw culture and measurement of total cell recovery is crucial
in the evaluation of new macromolecular cryoprotectants. Biomacromolecules 21(7): 2864-2873. doi: 10.1021/acs.biomac.0c00591
Naaldijk, Y., Johnson, A.A.,
Friedrich-Stockigt, A. & Stolzing, A. 2016. Cryopreservation of dermal
fibroblasts and keratinocytes in hydroxyethyl starch-based
cryoprotectants. BMC Biotechnol. 16(1): 85. doi: 10.1186/s12896-016-0315-4
Omar, N., Lokanathan, Y.,
Mohd Razi, Z.R. & Bt Haji Idrus, R. 2019. The effects of Centella
asiatica (L.) urban on neural differentiation of human mesenchymal stem
cells in vitro. BMC Complement. Altern. Med. 19(1): 167.
doi: 10.1186/s12906-019-2581-x
Pollock, K., Samsonraj, R.M.,
Dudakovic, A., Thaler, R., Stumbras, A., McKenna, D.H., Dosa, P.I., van Wijnen,
A.J. & Hubel, A. 2017. Improved post-thaw function and epigenetic changes
in mesenchymal stromal cells cryopreserved using multicomponent osmolyte
solutions. Stem Cells Dev. 26(11):
828-842. doi: 10.1089/scd.2016.0347
Qu, C., Brohlin, M., Kingham,
P.J. & Kelk, P. 2020. Evaluation of growth, stemness, and angiogenic
properties of dental pulp stem cells cultured in cGMP xeno-/serum-free medium. Cell Tissue Res. 380(1): 93-105. doi:
10.1007/s00441-019-03160-1
Saeedi, P., Halabian, R.
& Imani Fooladi, A.A. 2019. A revealing review of mesenchymal stem cells
therapy, clinical perspectives and modification strategies. Stem Cell Investig. 6: 34. doi:
10.21037/sci.2019.08.11
Selich, A., Zimmermann, K.,
Tenspolde, M., Dittrich-Breiholz, O., von Kaisenberg, C., Schambach, A. &
Rothe, M. 2019. Umbilical cord as a long-term source of activatable mesenchymal
stromal cells for immunomodulation. Stem
Cell Res. Ther. 10(1): 285. doi: 10.1186/s13287-019-1376-9
Shivakumar, S.B., Bharti, D.,
Jang, S.J., Hwang, S.C., Park, J.K., Shin, J.K., Byun, J.H., Park, B.W. &
Rho, G.J. 2015. Cryopreservation of human Wharton's jelly-derived mesenchymal
stem cells following controlled rate freezing protocol using different
cryoprotectants; A comparative study. Int.
J. Stem Cells 8(2): 155-169. doi: 10.15283/ijsc.2015.8.2.155
Shivakumar, S.B., Bharti, D.,
Subbarao, R.B., Jang, S.J., Park, J.S., Ullah, I., Park, J.K., Byun, J.H.,
Park, B.W. & Rho, G.J. 2016. DMSO- and serum-free cryopreservation of
Wharton's jelly tissue isolated from human umbilical cord. J. Cell Biochem. 117(10): 2397-2412. doi: 10.1002/jcb.25563
Squillaro, T., Peluso, G.
& Galderisi, U. 2016. Clinical trials with mesenchymal stem cells: An
update. Cell Transplant 25(5):
829-848. doi: 10.3727/096368915X689622
Tripathy, S. 2017.
Cryopreservation of Mesenchymal stem cells (Mscs): Different approaches and
applications. International Journal of
Advanced Scientific and Technical Research 7(1): 435-456.
Whaley, D., Damyar, K.,
Witek, R.P., Mendoza, A., Alexander, M. & Lakey, J.R. 2021.
Cryopreservation: An overview of principles and cell-specific considerations. Cell Transplant 30: 963689721999617.
doi: 10.1177/0963689721999617
Yi, X., Chen, F., Liu, F.,
Peng, Q., Li, Y., Li, S., Du, J., Gao, Y. & Wang, Y. 2020. Comparative
separation methods and biological characteristics of human placental and
umbilical cord mesenchymal stem cells in serum-free culture conditions. Stem Cell Res. Ther. 11(1): 183. doi:
10.1186/s13287-020-01690-y
Yong, K.W., Wan Safwani,
W.K., Xu, F., Wan Abas, W.A., Choi, J.R. & Pingguan-Murphy, B. 2015.
Cryopreservation of human mesenchymal stem cells for clinical applications:
Current methods and challenges. Biopreserv.
Biobank 13(4): 231-239. doi: 10.1089/bio.2014.0104
Zhao, G., Liu, F., Lan, S.,
Li, P., Wang, L., Kou, J., Qi, X., Fan, R., Hao, D., Wu, C., Bai, T., Li, Y.
& Liu, J.Y. 2015. Large-scale expansion of Wharton's jelly-derived
mesenchymal stem cells on gelatin microbeads, with retention of self-renewal
and multipotency characteristics and the capacity for enhancing skin wound
healing. Stem Cell Res. Ther. 6(1):
38. doi: 10.1186/s13287-015-0031-3
Zhou, T., Yuan, Z., Weng, J.,
Pei, D., Du, X., He, C. & Lai, P. 2021. Challenges and advances in clinical
applications of mesenchymal stromal cells. J.
Hematol. Oncol. 14(1): 24. doi: 10.1186/s13045-021-01037-x
*Corresponding author; email:
lyoges@ppukm.ukm.edu.my
|